Lose to conserve: Predicting deleterious genomic variants for conservation

séminaire "Taille efficace et dépression de consanguinité «

Mirte Bosse, Paris 13-05

(Genetic) management of populations

- Select for beneficial traits
 - Local adaptation
 - Specific characteristics (commercial?)
- Maintaining genetic diversity
 - Keep adaptive potential of population
 - Avoid inbreeding depression

1). Mutation

2). Recombination

Driving forces of genetic diversity

How to measure genetic diversity along the genome?

How does population size affect genetic diversity?

How does population size affect genetic diversity?

Deleterious genetic variation

Genetic load

- Each genome contains deleterious variants
- Plays a role in inbreeding depression
- Deleteriousness can be context dependent

Predicting deleterious variants – how?

- Effect of non-synonymous mutations:
 - -'Sorting Intolerant From Tolerant' (SIFT)
 - 'Polymorphism Phenotyping' (PolyPhen-2)

- Towards genome-wide predictions:
 - ' Combined Annotation Dependent Depletion' (CADD)

A general framework for estimating the relative pathogenicity of human genetic variants

Martin Kircher^{1,5}, Daniela M Witten^{2,5}, Preti Jain^{3,4}, Brian J O'Roak^{1,4}, Gregory M Cooper³ & Jay Shendure¹

Predicting deleterious variants – how?

- CADD score for livestock species
 - Similar approaches as for human:

Some variants are always harmful, regardless species and/or environment

Predicting deleterious variants – ^how?

Where do deleterious variants occur?

Runs Of Homozygosity are enriched for deleterious variation!

Where do deleterious variants occur?

Hybridization can lead to outbreeding depression!

Occurrence of deleterious variants

What is the genomic distribution of deleterious variants?

How to manage for genetic diversity AND fitness?

Minimize coancestry in offspring

3 Methods to measure coancestry:

- Molecular
- Pedigree-based
- Runs of Homozygosity

How to manage for genetic diversity AND fitness?

3 Methods to measure coancestry:

- Molecular
- Pedigree-based
- Runs of Homozygosity

Use all information from genetic markers to minimize IBS

How to manage for genetic diversity AND fitness?

3 Methods to measure coancestry:

- Molecular
- Pedigree-based
- Runs of Homozygosity

Use all information from family relationships

How to manage for genetic diversity AND fitness?

- 3 Methods to measure coancestry:
- Molecular
- Pedigree-based
- Runs of Homozygosity

Use ROH information from genetic markers to minimize IBD

How to manage for genetic diversity AND fitness?

Using deleterious variants in management

Case study: Managing two pig populations

Using deleterious variants in management

The commercial Pietrain breed

AGENINGE

For quality of life

NLR

- Used for commercial breeding
- Effective population size of ~50
- Selected for specific traits:
 - 'selective sweeps' in genome

Using deleterious variants

the endangered warty pig Sus cebifrons

- Panay: founders brought to San Diego Zoo
- Negros: founders brought to Rotterdam Zoo

Long runs of homozygosity in younger generations

Nuijten et al. Int. J. Genomics 2016

More deleterious variants in Cebifrons

In silico management

- Managed for 10 generations
- Optimization of variation and fitness
 - Molecular
 - Runs Of Homozygosity
 - Pedigree

Random mating

Managed for 10 generations with optimal contributions:

Kept most genetic diversity with molecular coancestry

Managed for 10 generations with optimal contributions:

If genetic diversity is optimized....

....deleterious variants will rise in frequency!

Neutral variant

Managed for 10 generations with optimal contributions:

Highest fitness with ROH-based measures

Managed for 10 generations with optimal contributions:

If genetic diversity is optimized....

Managed for 10 generations with optimal contributions:

...selective sweeps are counteracted!

Implications for management?

- Distinguish quantity and quality of genetic variation
- Prioritize breeding strategy
 - Balance between fitness and diversity
 - Context dependent!
- Avoid counteracting selection
- Predict success of genetic rescue
- Targeted purging

Acknowledgements

Animal Breeding and Genomics Centre, Wageningen University, NL

San Diego Zoo

- Martijn Derks ٠
- Martien Groenen •
- Hendrik-Jan Megens •
- **Bioinformatics WUR**
 - Dick de Ridder
 - Christian Gross
- **TU Delft**
 - Marcel Reinders
- **Topigs Norsvin**
 - **Barbara Harlizus**
 - Egbert Knol •
 - Naomi Duijvesteijn •
- Hendrix Genetics
 - Katrijn Peeters ٠
 - Addie Vereijken ٠
 - Pieter van As

- **MNHN** Paris, France
 - Angeles deCara
 - **Frederic Austerlitz**

Blijdorp Rotterdam Harald Schmidt Oliver Ryder CAU, Beijing, China

WAGENINGEN UR For quality of life